LiDAR Point Cloud Object Recognition Method via Intensity Image Compensation

نویسندگان

چکیده

LiDAR point cloud object recognition plays an important role in robotics, remote sensing, and automatic driving. However, it is difficult to fully represent the feature information only by using information. To address this challenge, we proposed a method that uses intensity image compensation, which highly descriptive computationally efficient. First, constructed local reference frame for cloud. Second, calculate deviation angle between normal vector neighborhood of Third, extracted contour from corresponding cloud, carried out Discrete Fourier Transform on distance sequence barycenter each contour, took obtained result as object. Finally, repeated above steps existing prior data marked results build model library. We can recognize unknown calculating be recognized matching with rigorously tested avalanche photon diode array compared those four other methods. The experimental show superior comparison terms description computational efficiency meet needs practical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusing Bird View LIDAR Point Cloud and Front View Camera Image for Deep Object Detection

We propose a new method for fusing a LIDAR point cloud and camera-captured images in the deep convolutional neural network (CNN). The proposed method constructs a new layer called non-homogeneous pooling layer to transform features between bird view map and front view map. The sparse LIDAR point cloud is used to construct the mapping between the two maps. The pooling layer allows efficient fusi...

متن کامل

Automatic Vehicle Extraction from Airborne LiDAR Data Using an Object-Based Point Cloud Analysis Method

Automatic vehicle extraction from an airborne laser scanning (ALS) point cloud is very useful for many applications, such as digital elevation model generation and 3D building reconstruction. In this article, an object-based point cloud analysis (OBPCA) method is proposed for vehicle extraction from an ALS point cloud. First, a segmentation-based progressive TIN (triangular irregular network) d...

متن کامل

Stereo Image Point Cloud and Lidar Point Cloud Fusion for the 3d Street Mapping

Combining active and passive imaging sensors enables creating a more detailed 3D model of the real world. Then, these 3D data can be used for various applications, such as city mapping, indoor navigation, autonomous vehicles, etc. Typically, LiDAR and camera as imaging sensors are installed on these systems. Both of these sensors have advantages and drawbacks. Thus, LiDAR sensor directly provid...

متن کامل

Hierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud

A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12092087